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The ICARUS experiment

From 2D wire images to 3D images: removing ghost points Classifying 3D voxels 
by particle type

Michel electron

Michel electron reconstruction performance

Using Sparse Convolutions

Stopping muon decay product

92%

❖ Density-based 
clustering (DBSCAN) 
on predicted Michel 
and Track voxels

❖ Select Michel 
clusters attached to 
the edge of a Track 
cluster

❖ Event display online

Pixel count in candidate cluster 
vs true energy of primary

❖ Detector using wire readouts 
= 2D images

❖ 3D point reconstruction 
algorithm  yields a lot of false 
positives (“ghost points”).

❖ UResNet trained to predict 
ghost vs non-ghost  points 
classification

Fraction of ghost 
voxels correctly 

predicted

94%
Fraction of non-ghost 

voxels correctly 
predicted

Efficiency Purity
Identification 93% 98%
Clustering 88% 91%

Confusion matrix: fraction of voxels of 
true type Y identified as type X

Predicted particle type 
per voxel

❖ Encoder downsamples image, 
increase features

❖ Decoder: upsamples image, 
decrease features

❖ Residual connections: help to learn
❖ Concatenation: helps to restore 

the original resolution

UResNet architecture for pixel-wise classification
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True ghost voxels mistakenly
predicted as non-ghost
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Dense Sparse (but locally dense)

<1% of voxels 
are non-zero in 
LArTPC data

Zero voxels are 
meaningless!

CNNs rely on 
dense matrix 
multiplications

All pixels are 
meaningful for 
CNNs.

"3d semantic segmentation with submanifold sparse convolutional networks." 
https://github.com/facebookresearch/SparseConvNet Our code lartpc_mlreco3d: 

https://github.com/DeepLearnPhysics/lartpc_mlreco3d

Submanifold sparse convolutions solve…

1. Resources waste: dense convolutions 
on sparse data

2. Dilation problem: keeping the same 
level of sparsity
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